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Retardation correction to the Lorentz-Lorenz formula for the refractive index
of a disordered system of polarizable point dipoles

B. Ersfeld
Department of Applied Mathematics, University of St. Andrews, St. Andrews (Fife), United Kingdom

B. U. Felderhof
Institut für Theoretische Physik A, RWTH Aachen, Templergraben 55, 52056 Aachen, Germany

~Received 27 May 1997!

An approximate expression for the effective dielectric tensor of a fluid or suspension of spherical particles
with a polarizable point dipole at the center is derived by a selection of terms in the cluster expansion. Full
account is taken of the effect of retardation. The effective dielectric tensor depends on wave vector and
frequency. In the limit of zero frequency the derived expression reduces to the wave-vector-dependent tensor
found from electrostatics by the same procedure. In the limit of zero frequency and zero wave vector it reduces
to the Clausius-Mossotti formula. The transverse part of the tensor may be regarded as a generalization of the
well-known Lorentz-Lorenz formula for the refractive index. It is shown that the generalization leads to
unphysical results if the damping of the individual spherical particles is too small. This implies that correlation
corrections must be taken into account.@S1063-651X~97!11912-2#

PACS number~s!: 41.20.Jb, 78.20.Ci, 78.40.Dw
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I. INTRODUCTION

A well-defined coherent monochromatic electromagne
plane wave can propagate in a disordered system of pol
able particles, provided the wavelength is much larger t
the average distance between particles. The extinction t
rem @1–5# shows that multiple scattering has the effect
replacing the vacuum wavelength by a modified one. T
ratio of the two wavelengths is the refractive index. T
coherent wave satisfies Maxwell’s equations on the ma
scopic level and the refractive index may be calculated fr
the effective dielectric tensor of the medium. If the wav
length is sufficiently short the wave-vector- and frequen
dependent dielectric tensor must be used@6#. The latter can
in principle be calculated from a cluster expansion@7,8#, but
in practice only a limited number of terms of the expans
can be evaluated and one is forced to make approximati

In the following we study the same selection of terms
the cluster expansion that in the electrostatic case led to
Clausius-Mossotti formula and its nonlocal generalizat
@9#. We take full account of retardation and are therefore
to a nonlocal generalization of the Lorentz-Lorenz formu
@3#. For simplicity we consider a system of spherical p
ticles with a polarizable point dipole at the center. For t
case the same expression for the effective dielectric te
was derived by Pellegriniet al. @10# from Lax’s quasicrys-
talline approximation@11# with neglect of correlations, bu
with account of the nonoverlap condition.

We study in particular the Drude-Lorentz model for t
single-particle polarizability. We find that the nonlocal ge
eralization of the Lorentz-Lorenz formula leads to unphy
cal results if the damping of the single-particle oscillator
too small. This indicates that in such a case it is essentia
take the effect of correlation corrections into account.

The Drude-Lorentz model is particularly useful for
study of behavior at resonance. In the absence of dam
and with neglect of retardation one deals with a set of id
571063-651X/98/57~1!/1118~9!/$15.00
c
iz-
n
o-
f
e

o-

-
-

s.
f
he
n
d

-
s
or

-
-

to

ng
-

tical harmonic oscillators coupled by electrostatic dipole
teractions. The dielectric constant of a large number of s
oscillators, either in a regular crystalline arrangement@12–
14#, or in a disordered array@14#, reflects the frequency spec
trum of the coupled system. Furthermore, the dielectric c
stant at zero wave number has a spectral representation
it may be expressed as an integral over a positive spe
density@15#. The imaginary part of the dielectric constant
a function of frequency is directly related to the spect
density. The shape of the latter is determined by local-fi
effects. In the mean-field approximation and for cubic cry
tals the dielectric constant at zero wave number is given
the Clausius-Mossotti formula. According to this formul
the line shape remains sharp and the dipolar interact
merely cause a redshift of the single-particle resonance. T
is the well-known Lorentz shift. For a disordered system
spectral density shows inhomogeneous line broadening
determined by the local microstructure. The deviations fr
the Clausius-Mossotti formula are large near resonance.

For a system of harmonic oscillators coupled by retard
dipole interactions the frequency-dependent refractive in
describes the mean propagation of coherent transv
waves. In light of the above, the behavior of the comp
refractive index near the shifted resonance is of particu
interest. We cannot expect that the generalized Lore
Lorenz formula derived in the following provides a full an
accurate description of the line shape, which will again
strongly influenced by the local microstructure. Nonethele
a study of the generalized Lorentz-Lorenz formula is an
dispensable prerequisite. The formula should not be rega
as a somewhat arbitrary effective-medium approximat
@16#, but rather as an important ingredient of a full statistic
theory. A supplementary study of microstructural correlati
corrections must follow.

The system of polarizable point dipoles can be stud
conveniently by computer simulation@15#. We stress that for
atomic liquids retardation effects are negligible because
1118 © 1998 The American Physical Society
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57 1119RETARDATION CORRECTION TO THE LORENTZ- . . .
atomic diameter is much smaller than the optical wavelen
Retardation corrections are important in suspensions of
form spherical particles of sufficiently large size. Due to t
appearance of higher-order multipole effects both the sta
tical theory and simulations@17# of realistic suspensions be
come more involved. It seems wise to restrict prelimina
study to the dipolar system.

II. MICROSCOPIC AND MACROSCOPIC EQUATIONS

We consider electromagnetic fields in a polarizable s
tem of identical nonoverlapping spherical inclusions of
dius a embedded in a uniform background. At frequencyv
the dielectric constant«1(v) and magnetic permeability
m1(v) of the background medium may be complex. T
system is assumed to be linear, so that the electric and m
netic fields and the induced charge and current density o
late with the same time factor exp(2 ivt). The common time
factor may be canceled from the equations, so that at e
frequencyv we deal with a purely geometrical problem. Th
response of a single inclusion to an incident electromagn
field will be treated in the electric-dipole approximatio
This implies that the inclusion is replaced by a sphere
radiusa with dielectric constant«1(v) and magnetic perme
ability m1(v), with a pointlike dipole polarizabilitya(v) at
its center. If such a polarizable point inclusion is placed w
its center atR in an external fieldE0(r), then the induced
electric field, within and without the inclusion, is that of
point dipole of momentp5a(v)E0(R) at the center of the
inclusion. The dipole generates an electric field

E~r!5G1~r2R!•p, ~1!

whereG1(r) is the tensor Green’s function

G1~r!5
1

«1
~¹¹1k1

21!G1~r ! ~2!

derived from the scalar function

G1~r !5
eik1r

r
. ~3!

We abbreviate«15«1(v) andm15m1(v). The wave num-
berk15A«1m1k is chosen to have a positive imaginary pa
Here k5v/c, with c the velocity of light, is the vacuum
wave number. The tensor Green’s function in Eq.~2! may be
expressed alternatively as

G1~r!5
1

3«1
ik1

3$@2h0
~1!~k1r !2h2

~1!~k1r !#113h2
~1!~k1r ! r̂ r̂%,

~4!

with spherical Hankel functionshn
(1)(k1r ) of the first kind

@18#.
The magnetic field may be eliminated. On the micr

scopic level Maxwell’s equations for the system describ
above may be reduced to

¹3~¹3E!2k1
2E54p i

m1k

c
j, ~5!
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where j(r) is the current density. Taking the divergence
this equation and using the continuity equation we find

¹•E5
4p

«1
r, ~6!

wherer is the charge density. If the electric field is separa
into longitudinal and transverse partsE5El 1Et , then the
longitudinal partEl is determined from Eq.~6!, whereas the
transverse partEt satisfies the inhomogeneous wave equat

¹2Et1k1
2Et524p i

m1k

c
jt . ~7!

For a given configuration ofN inclusions with centers a
R1 , . . . ,RN the charge densityr(r) is given by

r52¹•P1rex, ~8!

whereP(r) is the microscopic polarization

P~r!5(
j 51

N

pjd~r2Rj ! ~9!

andrex(r) is the external charge density. The current dens
j(r) is given by

j52 ivP1 jex, ~10!

wherejex is the external current density.
We assume that the statistical distribution of inclusi

configurations is known, as described by a given probabi
distribution of centersW(R1 , . . . ,RN). The external charge
and current densitiesrex and jex are independent of this dis
tribution. Averaging over the probability distribution, w
find from Eq.~5!

¹3~¹3^E&!2k1
2^E&54p i

m1k

c
^ j&, ~11!

with mean current density

^ j&52 iv^P&1 jex. ~12!

Averaging Eq.~6! we find

¹•^E&5
4p

«1
^r&, ~13!

with mean charge density

^r&52¹•^P&1rex. ~14!

These equations are equivalent to Maxwell’s equations
the macroscopic level. The solution is given by

^E~r!&5E0~r!1E G0~r2r8!•^P~r8!&dr8, ~15!

where E0(r) is the applied field generated by the extern
charge and current density, and with the tensor Green’s fu
tion G0(r2r8),
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1120 57B. ERSFELD AND B. U. FELDERHOF
G0~r2r8!5G1~r2r8!2
4p

3«1
1d~r2r8! ~16!

with the prescription that in Eq.~15! the integral over the
Green’s functionG1(r2r8) is carried out with exclusion of a
little sphere of infinitesimal radius about the field pointr.
The prescription arises from the interchange of differen
tion and integration, which has been performed to arrive
the form ~15!.

The macroscopic constitutive equation of the system
derived from the solution of the set of coupled equations
the induced dipoles and a subsequent average over the
ability distributionW(R1 , . . . ,RN). This procedure leads to
a linear relation between average polarization^P(r)& and av-
erage electric field̂ E(r8)&, which is of short range in the
distanceur2r8u. For a macroscopic spatially uniform samp
of volumeV the constitutive relation takes the form

^P~r!&5E X~r2r8!•^E~r8!&dr8 ~17!

in the thermodynamic limitN→`, V→` at constant num-
ber densityn5N/V, with a translationally invariant suscep
tibility kernel X(r2r8). The nature of the kernel is dete
mined by the local microstructure. Formally, it may b
expressed in terms of a cluster expansion involving clu
integrals over partial distribution functions@7,8#. After a spa-
tial Fourier transform the constitutive relation~17! may be
expressed as

^Pqv&5x~q,v!•^Eqv&, ~18!

where we have made the dependence on frequency exp
The susceptibility tensorx(q,v) is related to the susceptibil
ity kernel X(r,v) by

x~q,v!5
1

8p3E X~r,v!e2 iq•rdr. ~19!

The effective dielectric tensor«(q,v) is given by

«~q,v!5«1~v!114px~q,v!. ~20!

We assume that the system on average is isotropic. Then
susceptibility tensor takes the form

x~q,v!5x l ~q,v!q̂q̂1x t~q,v!~12q̂q̂! ~21!

with scalar functionsx l (q,v) and x t(q,v). The dielectric
tensor takes the same form with scalar functions

« l ,t~q,v!5«1~v!14px l ,t~q,v!. ~22!

In the long-wavelength limitq→0 the longitudinal and
transverse susceptibility functions tend to the same va
x(v)[x l (0,v)5x t(0,v). The corresponding dielectri
constant is

«~v!5«1~v!14px~v!. ~23!

The propagation of transverse electromagnetic waves is
scribed by the solution of the dispersion equation
-
t

is
r
ob-

r
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e

e-

q2c25v2« t~q,v!m1~v!. ~24!

A particular solutionq(v) of this equation defines the re
fractive indexN(v) as the ratio of wave numbers

N~v![
q~v!

k1
, ~25!

with k15A«1(v)m1(v)v/c. In the following we are con-
cerned with an approximate calculation of the refractive
dex N(v).

III. OVERLAP APPROXIMATION

Clausius @19# and Mossotti@20# have derived a well-
known approximation to the dielectric constant« in electro-
statics. The approximation is of mean-field nature and
glects correlations in particle positions. The Clausiu
Mossotti formula reads

«2«1

«12«1
5

4p

3«1
na. ~26!

One derives it easily by approximating the average local fi
acting on a selected dipole by the Lorentz local field

FL5^E&1
4p

3«1
^P&. ~27!

In the derivation the electrostatic dipolar Green’s function
used. It was shown by Lorentz@21# and Lorenz@22# that if
retardation is taken into account the average local field is
very well approximated by Eq.~27!. On this basis they found
the Lorentz-Lorenz formula for the refractive index@23#

N2~v!2«1~v!m1~v!

N2~v!12«1~v!m1~v!
5

4p

3«1~v!
na~v!. ~28!

This expression provides a good approximation to the refr
tive index of polarizable fluids, even at optical frequenci
Of course, in that case«1(v)5m1(v)51.

In the following we study retardation corrections to th
Lorentz-Lorenz formula~28! in detail. We follow the proce-
dure of Felderhofet al. @9#, who showed how to derive the
Clausius-Mossotti formula~26! for a dielectric suspension o
spherical inclusions by a selection of terms in the clus
expansion for the effective dielectric constant. The same
lection of terms was then used to obtain an approxim
expression for the wave-vector-dependent effective dielec
tensor. For a system of spheres with a polarizable point
pole at the center the expression was evaluated in clo
form. The derivation was performed in electrostatics, but c
be generalized to include retardation. The selection of te
in the cluster expansion leads to the approximate expres
for the susceptibility tensor
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57 1121RETARDATION CORRECTION TO THE LORENTZ- . . .
xov~q,v![(
s51

`

~21!s21ns

3E
V0~1u2u•••us!

•••E dR2•••dRs

3„quM~1!•L~2!• . . . •L~s!uq…, ~29!

where the subscript ov indicates that only virtual over
terms are taken into account. The overlap reg
V0(1u2u•••us) corresponds to the restriction

uRj2Rj 21u,2a, j 52,3, . . . ,s. ~30!

The linear operatorM(1) represents the polarizability kern
of the selected sphere labeled 1. The linear operatorL( j )
represents the induced field generated by spherej . The no-
tation

~quOuq8!5E drE dr8e2 iq•rO~r,r8!eiq8•r8 ~31!

is used for a plane-wave matrix element of an operatoO
with kernelO(r,r8).

Thus one considers a plane-wave applied field of the fo

E0~r!5Eqe
iq•r, ~32!

and first evaluates the induced field due to an inclus
placed atRs . This is

Eind~r;Rs!5a~v!G0~r2Rs!•Eqe
iq•Rs. ~33!

Since in Eq.~29! we must integrate this field over position
Rs within a sphere of radius 2a centered atRs21, we need
the Green’s functionG0(r2r8), as given by Eq.~16!, with
the nature of the singularity specified. Because the pola
ability of the inclusion centered atRs21 is pointlike, the
integrated field is needed only atRs21. We therefore calcu-
late

E
uRs2Rs21u,2a

dRsEind~Rs21 ;Rs!

524p
a~v!

«1~v!
eiq•Rs21K~q,v!•Eq , ~34!

with the tensorK(q,v) defined by

K~q,v!52
«1~v!

4p E
R,2a

eiq•RG0~R,v!dR. ~35!

The tensor is found to be given by
n

n

z-

K~q,v!5
k1

212qq

k1
22q2

2
i

3

k1
3d

k1
22q2

$@2 j 0~qd!2 j 2~qd!#k1d

3h1
~1!~k1d!2qd j1~qd!@2h0

~1!~k1d!2h2
~1!

3~k1d!#%11 i
k1

3d

k1
22q2

@qd j1~qd!h2
~1!~k1d!

2 j 2~qd!k1dh1
~1!~k1d!#q̂q̂, ~36!

where j n(z) is a spherical Bessel function andd52a. The
tensor may be separated into longitudinal and transve
parts as

K~q,v!5K l ~q,v!q̂q̂1Kt~q,v!~12q̂q̂!. ~37!

Repeating the calculations21 times we obtain

E
V0~1u2u•••us!

•••E dR2•••dRs$L~2!•••••L~s!•E0%r5R1

5eiq•R1S 2
4pa

«1
D s21

$@K l ~q,v!#s21q̂q̂

1@Kt~q,v!#s21~12q̂q̂!%•Eq . ~38!

Finally, forming the matrix element with the bra (quM(1) in
Eq. ~29! we find

xov~q,v!5na(
s51

` S 4pna

«1
D s21

$@K l ~q,v!#s21q̂q̂

1@Kt~q,v!#s21~12q̂q̂!%. ~39!

This can be written as

xov~q,v!5x l ~q,v!q̂q̂1x t~q,v!~12q̂q̂! ~40!

with longitudinal and transverse susceptibility

x l ,t~q,v!5
na

12~4pna/«1!K l ,t~q,v!
. ~41!

From Eq.~36! we find for the longitudinal part

K l ~q,v!5122i
j 1~qd!

qd
k1

2d2h1
~1!~k1d! ~42!

and for the transverse part

Kt~q,v!5
k1

2

k1
22q2 F12

i

3
k1d$@2 j 0~qd!2 j 2~qd!#k1d

3h1
~1!~k1d!2qd j1~qd!@2h0

~1!~k1d!2h2
~1!

3~k1d!#%G . ~43!

In the limit of zero frequency these expressions reduce
those calculated in electrostatics@9#, provided«1(v) is finite
at zero frequency.
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1122 57B. ERSFELD AND B. U. FELDERHOF
The overlap approximation is equivalent to the repla
ment of the so-called recurrence operatorR(q;s,s8) occur-
ring in the generalized Foldy-Lax formula@24# by its overlap
part

Rov~q;s,s8!52E
R,2a

G0~s2s82R!exp~ iq•R!dR.

~44!

Earlier we have studied@25# this integral for arbitrarys,s8.
For the point dipole model it suffices to considers5s850. It
is easily shown that our previous result, given by Eq.~8.9! in
Ref. @25#, reduces to Eqs.~42! and ~43! for s5s850.

The so-called quasicrystalline approximation of Lax@11#
amounts to the approximation for the recurrence oper
@24#

R~q;s,s8!'E h~R!G0~s2s82R! exp~ iq•R!dR, ~45!

where h(R) is the pair-correlation function. If the latter i
approximated by2u(2a2R), whereu(x) is the Heaviside
step function, then the integral in Eq.~45! reduces to
Rov(q;s,s8) in Eq. ~44!. This is the approximation used b
Pellegriniet al. @10#. Their expression for the dielectric ten
sor, when generalized to arbitrary point dipole polarizabili
is easily shown to be equivalent to Eqs.~40!–~43!.

IV. NONLOCAL GENERALIZATION OF THE LORENTZ-
LORENZ FORMULA

An approximation to the frequency-dependent refract
index N(v) is found by use of Eq.~41! in Eqs. ~22!, ~24!,
and~25!. The limiting value of the functionKt(q,v) at zero
wave number and zero frequency isKt(0,0)5 1

3. If this value
is used in Eq.~41!, one recovers the Lorentz-Lorenz formu
~28!. Corrections to the Lorentz-Lorenz formula are due
the wave-number and frequency dependence of the func
Kt(q,v). In this section we show how to cast the dispers
equation~24! into a form from which the corrections to th
Lorentz-Lorenz formula can be easily calculated.

We use the abbreviations

x5k1a, y5qa ~46!

and write Eq.~43! in the form

Kt~q,v!5
x2

x22y2
@12St~x,y!#, ~47!

with the functionSt(x,y) defined by

St~x,y!5
4

3
ix $2 j 0~2y!2 j 2~2y!#xh1

~1!~2x!2y j1~2y!

3@2h0
~1!~2x!2h2

~1!~2x!#%. ~48!

Moreover, we define the dimensionless functionA(x) by

A~x!54pn
a~v!

«1~v!
. ~49!
-

or

,

e

on
n

Substituting into Eq.~41!, using Eq.~22!, and solving forq2

from the dispersion equation~24! we find

y2

x2
511A~x!St~x,y!. ~50!

The functionSt(x,y) has the property

St~x,x!51, ~51!

so that Eq.~50! has a rooty(x) that tends tox at largex,
since the polarizabilitya(v) tends to zero and the dielectri
constant«1(v) to a constant at high frequency. Fory50,

St~x,0!5
8

3
ix2h1

~1!~2x!. ~52!

This tends toSt(0,0)5 2
3 as x→0. However, the function

St(x,y) is singular atx50 for yÞ0. If we expand iny2, then

St~x,y!5St~x,0!1St
~2!~x!y21O~y4! ~53!

with, in the second term,

St
~2!~x!52

8

9
ixF2h0

~1!~2x!1
12

5
xh1

~1!~2x!2h2
~1!~2x!G .

~54!

This function behaves as

St
~2!~x!5

1

3x2
2

6

5
1O~x! ~55!

for small x. Substituting into Eq.~47!, we see thatKt(0,0)
51

3, as mentioned before. It is convenient to define the fu
tion

Sd~x,y!5
St~x,y!2St~x,0!

y2
. ~56!

With this definition Eq.~50! may be written in the form

y2

x2
5

11A~x!St~x,0!

12x2A~x!Sd~x,y!
. ~57!

If here St(x,0) is replaced by its value23 for small x and
x2Sd(x,y) is replaced by its value13 for small x andy, then
this becomes

y2

x2
'

312A~x!

32A~x!
, ~58!

which is equivalent to the Lorentz-Lorenz formula~28!. One
may obtain corrections to the Lorentz-Lorenz formula
solving Eq.~57! by iteration. The iteration converges rapidl
in contrast to Eq.~50!, which is numerically unstable unde
iteration. Therefore, we regard Eq.~57! as the proper nonlo-
cal generalization of the Lorentz-Lorenz formula.
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V. ANALYSIS OF THE GENERALIZED LORENTZ-
LORENZ FORMULA

In this section we analyze the generalized Lorentz-Lor
formula ~57! in more detail. It is useful to regard the squa
of the refractive indexN2(v)5y2/x2 corresponding to the
appropriate solutiony(x) of Eq. ~57! as a function of dimen-
sionless polarizabilityA and size parameterx. Since we want
to consider large polarizability it is convenient to use t
variable

z52
1

A
. ~59!

Thus we consider the functionN2(z,x) for complexz and
positive x. From Eq. ~58! we see that the usual Lorentz
Lorenz formula corresponds to

N2~z,0!512
1

z1
1

3

, ~60!

with a simple pole atz52 1
3. For size parameterx.0 the

analytic structure of the functionN2(z,x) becomes more
complicated.

It is of interest to consider the Drude-Lorentz model w
polarizability

a~v!5«1

C

v0
22v2

a3, ~61!

whereC is the coupling constant andv0 the resonance fre
quency. Moreover, we consider constant«1, for example,
«151 for vacuum. From Eq.~49! we see that for this mode
the variablez takes real values for real frequencies, w
z50 at the resonance frequencyv0. The pole atz52 1

3 in
Eq. ~60! corresponds to the Lorentz-shifted resonance@26# at

vL5Av0
22

4p

3
na3C. ~62!

One would expect that for size parameterx.0 the pole gets
shifted to a position in the lower half of the complexz plane,
corresponding to a shifted and broadened Lorentzian l
However, the analytic behavior turns out to be more com
cated and a branch cut singularity in the upper half of
complexz plane develops.

To analyzeN2(z,x) as a function of the complex variabl
z for fixed x we cast it in the form of the continued fractio

N2~z,x!512
1

b11z2
a1

b21z2
a2

�

~63!

with coefficientsaj ,bj that depend onx. These can be de
termined from the coefficients in the series expansion in
verse powers ofz,
z

e.
i-
e

-

N2~z,x!511(
j 50

`
cj~x!

z j 11
, ~64!

by an algorithm due to Stieltjes@27#. The latter expansion is
in effect an expansion in powers of the polarizability. T
coefficientscj can be determined from Eq.~50!, cast in the
form

N2~z,x!512
1

z
St~x,y!. ~65!

From Eq.~51! we find

c0521. ~66!

The higher-order coefficients can be found by expansion
St(x,y) about y5x in powers of the differencey2x. In
particular we findb15c152z0(x) with

z0~x!5
1

16x3
@~ i 14x24ix224x3!e4ix2 i 24ix214x3

116ix4#. ~67!

For largez we find from Eq.~63!

N2~z,x!'12
1

z2z0~x!
. ~68!

Hence z0(x) is the weighted center of singularities. Fo
small x

z0~x!52
1

3
1

22

15
x21

16

9
ix31O~x4!. ~69!

In Fig. 1 we plot the real and imaginary parts Rez0(x) and
Imz0(x) as functions ofx. The positivity of Imz0(x) implies
that the preponderant weight of the singularities resides
the upper half of the complexz plane. Numerically we find a

FIG. 1. Plot of the real and imaginary parts of the center
singularitiesz0(x), defined by Eq.~ 67!, as a function of size pa-
rameterx ~solid curve and dashed curve, respectively!.
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branch cut nearz52 1
3 for small x. In Fig. 2 we plot the

imaginary part ImN2(z,x) for x50.1 as a function ofj for
z5j10.06i .

VI. DRUDE-LORENTZ MODEL

The fact that the singularity centerz0(x) lies in the upper
half of the complexz plane implies that the generalize
Lorentz-Lorenz formula~57! does not provide a satisfactor
approximation for the refractive indexN2(v) as a function
of frequency. For the Drude-Lorentz model without dam
ing, defined by Eq.~61!, the exact refractive indexN2(v)
should obey the Kramers-Kronig relations, but the gene
ized Lorentz-Lorenz formula predicts a violation of causal
for this model. This shows that correlation corrections can
be neglected. Proper account of these corrections shoul
store causality for a disordered system of undamped Dru
Lorentz oscillators.

To get an impression of the nature of the generaliz
Lorentz-Lorenz formula we consider the Drude-Loren
model with damping, as given by the polarizability,

a~v!5«1

C

v0
22v22 ivg0

a3, ~70!

whereg0 is the damping constant. Expression~70! is used
for atomic spectral lines@23#, as well as for the description o
polaritons in solid suspensions@28#. The damping constan
g0 will be chosen sufficiently large that causality is not vi
lated by the generalized Lorentz-Lorenz formula. Upon s
stitution of Eq.~70! into Eq. ~49! we find for the function
A(x)

A~x!5
3p

x0
22x22 ixg0

, ~71!

with

p5f«1m1

a2

c2
C, g05A«1m1

a

c
g0 , ~72!

FIG. 2. Plot of ImN2(z,x) for x50.1 as a function ofj for
z5j10.06i .
-

l-

t
re-
e-

d

-

where f5(4p/3)na3 is the volume fraction. The back
ground properties«1 andm1 are taken to be real constant
The Lorentz-Lorenz formula in the form~58! becomes

NL
2~v!511

3p

x0
22x22 ixg02p

, ~73!

showing a Lorentzian resonance at

xL5Ax0
22p ~74!

of half-width g0. The differencex02xL is the well-known
Lorentz shift. The parameter

x05A«1m1

a

c
v0 ~75!

measures the importance of retardation.
In comparing different systems it is natural to keep t

ratiog0 /x05g0 /v0 fixed. We shall analyze the square of th
refractive indexN2(v) as a function of dimensionless fre
quency x for various values ofx0 and p, keepingg0 /x0
fixed. In the limit of zero frequency the refractive index
given by Eq.~58!, so that

N2~0!5
312A~0!

32A~0!
, ~76!

corresponding to the Lorentz-Lorenz formula~28!, taken at
zero frequency. From Eq.~71! we find for the present case

N2~0!5
x0

212p

x0
22p

. ~77!

This clearly depends on the resonance frequencyv0. We
shall vary the parameterp in proportion tox0

2, so that both
N2(0) and the ratioxL /x0 remain fixed asx0 varies. As a

FIG. 3. Plot of ImN2(z,x) as a function ofx/x0 for x050.1
~dashed curve! and x050.2 ~dotted curve! for the Drude-Lorentz
model with damping coefficientg050.1x0 and coupling paramete
p50.25x0

2. We compare with the Lorentzian ImNL
2(v), as given

by Eq. ~ 73! ~solid curve!.
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consequence, the Lorentz-Lorenz functionNL
2(v) given by

Eq. ~73! takes the same form for different values ofx0 when
plotted as a function ofx/x0.

In Fig. 3 we plot ImN2(v) as a function of dimensionles
frequencyx/x05v/v0 for two valuesx050.1 andx050.2
with damping coefficientg050.1x0 and coupling paramete
p50.25x0

2, so thatN2(0)52. We compare with the Lorent
zian ImNL

2(v), which follows from Eq.~73!. As the retarda-
tion parameterx0 increases the absorption line shifts to t
right, becomes narrower, and takes a non-Lorentzian fo
In Fig. 4 we present similar plots for the valuesx050.1 and
x050.2 with damping coefficientg050.2x0 and coupling
parameterp50.5x0

2, corresponding toN2(0)54. In Fig. 5
we present plots forx050.1 andx050.2 with damping co-
efficient g050.3x0 and coupling parameterp50.7x0

2, corre-
sponding toN2(0)58. In all cases we have chosen th
damping coefficient sufficiently large that the generaliz
Lorentz-Lorenz formula does not violate causality.

VII. DISCUSSION

We have studied the nonlocal generalization of
Lorentz-Lorenz formula for the refractive index that follow
from a selection of terms in the cluster expansion for
effective dielectric tensor. In turns out that the correspond

FIG. 4. Same as in Fig. 3 for damping coefficientg050.2x0 and
coupling parameterp50.5x0

2.
.

d

e

e
g

refractive index as a function of the complex single-parti
polarizability has surprising features with a singularity stru
ture in the physical part of the complex plane that cau
violation of causality if the damping of the single-partic
polarizability is too weak. This implies that the generaliz
Lorentz-Lorenz formula must be used with caution. F
weak damping it is essential to include correlation corr
tions in the calculation of the effective dielectric tensor
order to restore causality. Calculations in electrostatics of
inhomogeneous line broadening corresponding to correla
corrections show that this provides sufficiently large effe
tive damping@29#. These calculations should be extended
include retardation.

We have considered a simple model of spherical partic
with a polarizable point dipole at the center. In previo
work @25# we have derived a mathematical identity that
lows one to study more general models. In particular,
case of uniform dielectric spheres can be investigated. Du
the occurrence of higher-order multipole polarizabilities t
calculation becomes rather more involved@30#. It is desirable
to have a better understanding of correlation corrections
the point dipole model before embarking on elaborate ca
lations for more complicated systems.
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FIG. 5. Same as in Fig. 3 for damping coefficientg050.3x0 and
coupling parameterp50.7x0
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