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Retardation correction to the Lorentz-Lorenz formula for the refractive index
of a disordered system of polarizable point dipoles
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An approximate expression for the effective dielectric tensor of a fluid or suspension of spherical particles
with a polarizable point dipole at the center is derived by a selection of terms in the cluster expansion. Full
account is taken of the effect of retardation. The effective dielectric tensor depends on wave vector and
frequency. In the limit of zero frequency the derived expression reduces to the wave-vector-dependent tensor
found from electrostatics by the same procedure. In the limit of zero frequency and zero wave vector it reduces
to the Clausius-Mossotti formula. The transverse part of the tensor may be regarded as a generalization of the
well-known Lorentz-Lorenz formula for the refractive index. It is shown that the generalization leads to
unphysical results if the damping of the individual spherical particles is too small. This implies that correlation
corrections must be taken into accoyi81063-651X97)11912-2

PACS numbse(s): 41.20.Jb, 78.20.Ci, 78.40.Dw

[. INTRODUCTION tical harmonic oscillators coupled by electrostatic dipole in-
teractions. The dielectric constant of a large number of such
A well-defined coherent monochromatic electromagneticoscillators, either in a regular crystalline arrangemdra—
plane wave can propagate in a disordered system of polariZ4], or in a disordered arrdyl 4], reflects the frequency spec-
able particles, provided the wavelength is much larger thatrum of the coupled system. Furthermore, the dielectric con-
the average distance between particles. The extinction theatant at zero wave number has a spectral representation, i.e.,
rem [1-5] shows that multiple scattering has the effect ofit may be expressed as an integral over a positive spectral
replacing the vacuum wavelength by a modified one. Thalensity[15]. The imaginary part of the dielectric constant as
ratio of the two wavelengths is the refractive index. Thea function of frequency is directly related to the spectral
coherent wave satisfies Maxwell's equations on the macrodensity. The shape of the latter is determined by local-field
scopic level and the refractive index may be calculated froneffects. In the mean-field approximation and for cubic crys-
the effective dielectric tensor of the medium. If the wave-tals the dielectric constant at zero wave number is given by
length is sufficiently short the wave-vector- and frequency-the Clausius-Mossotti formula. According to this formula,
dependent dielectric tensor must be ug@H The latter can the line shape remains sharp and the dipolar interactions
in principle be calculated from a cluster expandgi@8], but  merely cause a redshift of the single-particle resonance. This
in practice only a limited number of terms of the expansionis the well-known Lorentz shift. For a disordered system the
can be evaluated and one is forced to make approximationspectral density shows inhomogeneous line broadening, as
In the following we study the same selection of terms ofdetermined by the local microstructure. The deviations from
the cluster expansion that in the electrostatic case led to thihe Clausius-Mossotti formula are large near resonance.
Clausius-Mossotti formula and its nonlocal generalization For a system of harmonic oscillators coupled by retarded
[9]. We take full account of retardation and are therefore ledlipole interactions the frequency-dependent refractive index
to a nonlocal generalization of the Lorentz-Lorenz formuladescribes the mean propagation of coherent transverse
[3]. For simplicity we consider a system of spherical par-waves. In light of the above, the behavior of the complex
ticles with a polarizable point dipole at the center. For thisrefractive index near the shifted resonance is of particular
case the same expression for the effective dielectric tensanterest. We cannot expect that the generalized Lorentz-
was derived by Pellegriret al. [10] from Lax’s quasicrys- Lorenz formula derived in the following provides a full and
talline approximatior{11] with neglect of correlations, but accurate description of the line shape, which will again be
with account of the nonoverlap condition. strongly influenced by the local microstructure. Nonetheless,
We study in particular the Drude-Lorentz model for the a study of the generalized Lorentz-Lorenz formula is an in-
single-particle polarizability. We find that the nonlocal gen- dispensable prerequisite. The formula should not be regarded
eralization of the Lorentz-Lorenz formula leads to unphysi-as a somewhat arbitrary effective-medium approximation
cal results if the damping of the single-particle oscillator is[16], but rather as an important ingredient of a full statistical
too small. This indicates that in such a case it is essential ttheory. A supplementary study of microstructural correlation
take the effect of correlation corrections into account. corrections must follow.
The Drude-Lorentz model is particularly useful for a  The system of polarizable point dipoles can be studied
study of behavior at resonance. In the absence of dampingpnveniently by computer simulatiga5]. We stress that for
and with neglect of retardation one deals with a set of idenatomic liquids retardation effects are negligible because the
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atomic diameter is much smaller than the optical wavelengthwherej(r) is the current density. Taking the divergence of
Retardation corrections are important in suspensions of unihis equation and using the continuity equation we find
form spherical particles of sufficiently large size. Due to the

appearance of higher-order multipole effects both the statis- 4

tical theory and simulationgl7] of realistic suspensions be- V-E= g_lp' (6)
come more involved. It seems wise to restrict preliminary
study to the dipolar system. wherep is the charge density. If the electric field is separated
into longitudinal and transverse paffs=E, +E;, then the
Il. MICROSCOPIC AND MACROSCOPIC EQUATIONS longitudinal partE , is determined from Eq6), whereas the

) o ) ) transverse pai; satisfies the inhomogeneous wave equation
We consider electromagnetic fields in a polarizable sys-

tem of identical nonoverlapping spherical inclusions of ra- 5 ) ke
diusa embedded in a uniform background. At frequengy VB FkiE=—dai = . )
the dielectric constant;(w) and magnetic permeability

u1(w) of the background medium may be complex. TheFor a given configuration oN inclusions with centers at

system is assumed to be linear, so that the electric and mag, | . .. R, the charge density(r) is given by
netic fields and the induced charge and current density oscil-
late with the same time factor exp{ wt). The common time p=—V-P+pey, (8)

factor may be canceled from the equations, so that at each

frequencyw we deal with a purely geometrical problem. The WhereP(r) is the microscopic polarization

response of a single inclusion to an incident electromagnetic N

field will be treated in the electric-dipole approximation.

This implies that the inclusion is replaced by a sphere of P(r):jgl P o(r=R;) ©)
radiusa with dielectric constant;(w) and magnetic perme-

ability u,(w), with a pointlike dipole polarizabilityx(w) at  andp(r) is the external charge density. The current density
its center. If such a polarizable point inclusion is placed withj(r) is given by

its center atR in an external fieldEy(r), then the induced

electric field, within and without the inclusion, is that of a j= —10P+jex, (10
point dipole of momenp= a(w)Ey(R) at the center of the o )
inclusion. The dipole generates an electric field whereje, is the external current density.
We assume that the statistical distribution of inclusion
E(r)=G,(r—R)-p, (1)  configurations is known, as described by a given probability
distribution of centerdV(R4, ... ,Ry). The external charge
whereG,(r) is the tensor Green'’s function and current densities,, andj., are independent of this dis-

tribution. Averaging over the probability distribution, we

1 :
Gl(r)zs—(VV+k§1)Gl(r) @ find from Eq.(5)
1
k
2N g R
derived from the scalar function VX (VX (E)) — kX E)=4mi . (i, 11
el with mean current density

Gy(r)= r ()

(D)= —10(P) Flex (12)

We abbreviates;=¢,(w) and u;= u,(w). The wave num-
berk,= yequk is chosen to have a positive imaginary part.
Here k= w/c, with ¢ the velocity of light, is the vacuum 4
wave number. The tensor Green’s function in E2).may be V-(E)=—/p), (13
expressed alternatively as &1

Averaging Eq.(6) we find

with mean charge density

1 -
Gl(r)=3—81ikf{[2hgl)(k1r)—h(zl)(klr)]1+3h(21)(k1r)rr}, (oy= (Bt p 10

4

. ] ) 1 . . These equations are equivalent to Maxwell's equations on
[18].

The magnetic field may be eliminated. On the micro- , , ,
scopic level Maxwell's equations for the system described <E(r)>=E0(r)+f Go(r—r")-(P(r"))dr’, (15
above may be reduced to

‘ where Eq(r) is the applied field generated by the external
VX (VXE)— k2E=4 i M_lj, 5) gharge and ’current density, and with the tensor Green’s func-
C tion Go(r—r'),
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4 2c?=w?ey(q, : 24
Go(r—r’)=G1(r—r’)—3—;16(r—r’) (16) q w St(q w)ﬂ/l(w) ( )
A particular solutionq(w) of this equation defines the re-

with the prescription that in Eq15) the integral over the fractive indexN(w) as the ratio of wave numbers

Green'’s functiorG,(r—r') is carried out with exclusion of a
little sphere of infinitesimal radius about the field pomt
The prescription arises from the interchange of differentia- N(w)EM (25
tion and integration, which has been performed to arrive at ky ’
the form (15).

The macroscopic constitutive equation of the system is . .
derived from the solution of the set of coupled equations fotVith Ki=vei(w)ui(w)w/c. In the following we are con-

the induced dipoles and a subsequent average over the prd 2rned with an approximate calculation of the refractive in-

ability distributionW(R, ... ,Ry). This procedure leads to exN(w).

a linear relation between average polarizatjf(r)) and av-

erage electric field E(r")), which is of short range in the IIl. OVERLAP APPROXIMATION
distancdr—r’|. For a macroscopic spatially uniform sample

of volume Q) the constitutive relation takes the form Clausius[19] and Mossotti[20] have derived a well-

known approximation to the dielectric constanin electro-
, S statics. The approximation is of mean-field nature and ne-
(P(r)>=f X(r=r")-(E(r'))dr (17 glects correlations in particle positions. The Clausius-
Mossotti formula reads
in the thermodynamic limiN—o, () —o0 at constant num-
ber densityn=N/(}, with a translationally invariant suscep- e A
tibility kernel X(r—r"). The nature of the kernel is deter- ! ha (26)
mined by the local microstructure. Formally, it may be et+2e; 3ey
expressed in terms of a cluster expansion involving cluster
integrals over partial distribution functiof,8]. After aspa-  One derives it easily by approximating the average local field

tial Fourier transform the constitutive relatlcﬂﬂﬂ) may be acting on a selected d|po|e by the Lorentz local field
expressed as

<PQM>:X(qrw)'<Equ}>! (18)

where we have made the dependence on frequency explicit.

The susceptibility tensog(q, ) is related to the susceptibil- o o o
ity kernel X(r,») by In the derivation the electrostatic dipolar Green’s function is

used. It was shown by Lorenf21] and LorenZ22] that if
1 ‘ retardation is taken into account the average local field is still
X(Q )= —af X(r,w)e™'%"dr. (190  very well approximated by Eq27). On this basis they found
87 the Lorentz-Lorenz formula for the refractive indgg3]

4
FL=(E)+ 3—81<P>- (27)

The effective dielectric tensat(q, w) is given by
Nz(w)_gl(w);ul(w) _ 4

N2(w)+ 261 () puy(w) 3€1(@)

g(qw)=¢1(w)1+4mXx(Q,w). (20 na(w). (28
We assume that the system on average is isotropic. Then the

susceptibility tensor takes the form This expression provides a good approximation to the refrac-

~n an tive index of polarizable fluids, even at optical frequencies.
X(qaw):X/(q1w)qq+)(t(qrw)(l_qq) (21) Of course, in that Casel(w):,ul(w)zl_

In the following we study retardation corrections to the
Lorentz-Lorenz formuld28) in detail. We follow the proce-
dure of Felderhott al.[9], who showed how to derive the

_ Clausius-Mossotti formulé26) for a dielectric suspension of
g/ @w)=81(w) +4mx (0, 0). 22 spherical inclusions by a selection of terms in the cluster
In the long-wavelength limitq—0 the longitudinal and €xpansion for the effective dielectric constant. The same se-
transverse susceptibility functions tend to the same valuéction of terms was then used to obtain an approximate
¥(@)=x,(0,0)=x(0,w). The corresponding dielectric €XPression for the wave—vector—depgndent effgctlve dle!eCtI’I.C
constant is tensor. For a system of spheres with a polarizable point di-
pole at the center the expression was evaluated in closed
e(w)=g,(w)+4my(w). (23y  form. The derivation was performed in electrostatics, but can
be generalized to include retardation. The selection of terms
The propagation of transverse electromagnetic waves is déa the cluster expansion leads to the approximate expression
scribed by the solution of the dispersion equation for the susceptibility tensor

with scalar functionsy (g,w) and x;(q,»). The dielectric
tensor takes the same form with scalar functions
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- kK21-qq i kid
= _1\S"1ps ™ 1 . .
Xo( @)= 2 (-1 K@) =77 3z g2 [ Ao add Tk
« f f dR,- - dR, X h{V(kyd) - qdji(qd)[ 2h§" (kyd) —h5)
Vo(1[2]-+[s) 2
. 1 .
X@M(1)-L(2) ... L(s)a), (29 X(ad) 7 qz[qdh(qdmé”(kld)
2_
where the subscript ov indicates that only virtual overlap —j2(qd)k,dhiP(k.d)]qq, (36)
terms are taken into account. The overlap region _ _ _ _
Vo(1]2|- - -|s) corresponds to the restriction wherej,(z) is a spherical Bessel function awd=2a. The
tensor may be separated into longitudinal and transverse
. parts as
IR—Rj_1/<2a, j=23,...s. (30

K(g,0)=K,(g,0)qq+K(a,0)(1-qa).  (37)
The linear operatoM(1) represents the polarizability kernel . . . .
of the selected sphere labeled 1. The linear operiafpy Repeating the calculatios—1 times we obtain

represents the induced field generated by sphefiene no-

tation f ~-~de2--~dRS{L(2) ----- L(S)'Eo}r:Rl
Vo(1/2]---[s)
. Sy ig-R Ama st s—1.A
(q|O|q’)=fer dr'e '4TO(r,r')e'd " (31 =e/T™ T ey {[KA(9,0)]° "qq
+[Ki(g,0) 15 H(1-qo)} - Eq. (39)

is used for a plane-wave matrix element of an oper&lor

with kernel O(r,r"). Finally, forming the matrix element with the bra|( (1) in
Thus one considers a plane-wave applied field of the fornkg. (29) we find

iq = (4mna\STt .
EoN) =E¢e ", (32 Xo G 0)=na 2, ( j “) {IKAq.@)]° "4
s=1 1
and first evaluates the induced field due to an inclusion +[K(q,@) 15 11— qa)}. (39

placed atRg. This is
This can be written as

Eind(iRe) = a(@)Golr =Ry E€¥™. (33) Xor( @) = X A0 )+ xe(Go) (1-G0)  (40)

Since in Eq.(29) we must integrate this field over positions With longitudinal and transverse susceptibility

Rs within a sphere of radius& centered aR,_,, we need

the Green’s functiorGy(r—r’), as given by Eq(16), with ¥, Q)= ne (41)
the nature of the singularity specified. Because the polariz- S 1-(4mnale)K, (d,0)°

ability of the inclusion centered d&s_, is pointlike, the ] o

integrated field is needed only R;_,. We therefore calcu- From Eq.(36) we find for the longitudinal part

late .
Jl(qd) 2421 (1)
KAQ0)=1-2i = = Kidhit(kad) (42)
fle— Rsfl\<2adRsEi“d( Re-1iR) and for the transverse part
=—4 MeiquflK( )-E (34) k% i . .
7Tsl(w) 4@)-Eq Ki(g,w)= 2 q? 1_§k1d{[210(qd)_Jz(qd)]kld
(1 —adi (1) N E)
with the tensoiK(q,w) defined by X hi”(kid)—qdji(qd)[2hg ' (kid) —h;
e1(w) X(kld)]}}- (43

K(q,w)=— e'9RGy(R,w)dR. (35

4 . .
R<2a In the limit of zero frequency these expressions reduce to
those calculated in electrostati®, providede,(w) is finite

The tensor is found to be given by at zero frequency.
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The overlap approximation is equivalent to the replace-Substituting into Eq(41), using Eq.(22), and solving forg?
ment of the so-called recurrence operaR{K;s,s’) occur- from the dispersion equatiof24) we find
ring in the generalized Foldy-Lax formula4] by its overlap
part y?
F=1+A(X)S[(x,y). (50

Ro(0;s,8")=— fRQaGo(s— s’ —R)expig-R)dR.

(44 The functionS;(x,y) has the property

Si(x,x)=1, (51)

Earlier we have studiefR5] this integral for arbitrans,s’.
For the point dipole model it suffices to considers’ =0. It
is easily shown that our previous result, given by 839) in
Ref.[25], reduces to Eq942) and(43) for s=s'=0.

The so-called quasicrystalline approximation of [d4]
amounts to the approximation for the recurrence operator 8
[24] S(x,00= §ix2h<11>(2x). (52

so that Eq.(50) has a rooty(x) that tends tax at largex,
since the polarizabilityx(w) tends to zero and the dielectric
constants;(w) to a constant at high frequency. Fpe0,

R(q;S,S')%f h(R)Go(s—s —R) expig-R)dR, (45  This tends t0S;(0,0)=% as x—0. However, the function
Si(x,y) is singular ak=0 fory+0. If we expand iry?, then

where h(R) is the pair-correlation function. If the latter is 2 5 4

approximated by- 6(2a—R), whered(x) is the Heaviside Si(%,y)=S(x,00+ §7(x)y“+O(y") (53

step function, then the integral in Ed45) reduces to o

Ro(9;S,S') in Eq. (44). This is the approximation used by With, in the second term,

Pellegriniet al. [10]. Their expression for the dielectric ten-

sor, when generalized to arbitrary point dipole polarizability, Sﬁz)(x)z _ §ix 2hD(2x) + 1—2xh(1)(2x) —h(2x)

is easily shown to be equivalent to E480)—(43). 9 0 571 2 '
(54)

IV. NONLOCAL GENERALIZATION OF THE LORENTZ- . .
LORENZ FORMULA This function behaves as

An approximation to the frequency-dependent refractive 1 6
index N(w) is found by use of Eq(41) in Egs.(22), (24), S?(x)= e §+O(X) (55
and(25). The limiting value of the functiof,(q,») at zero 3X

wave number and zero frequencykig 0,0)= 3. If this value o

is used in Eq(41), one recovers the Lorentz-Lorenz formula forl small x. _Substltutmg |nto. Eq(47), we see th‘?‘Kt(O’O)
(28). Corrections to the Lorentz-Lorenz formula are due to_ @ &S mentioned before. It is convenient to define the func-
the wave-number and frequency dependence of the functiot"

Ki(g,w). In this section we show how to cast the dispersion

equation(24) into a form from which the corrections to the S (x.y) = Si(X,y) = S(%,0)
Lorentz-Lorenz formula can be easily calculated. d(XY y2 ’

We use the abbreviations

(56)

With this definition Eq.(50) may be written in the form
x=kia, y=ga (46)

2
and write Eq.(43) in the form Yo 1HAMS(%,0) 57

X2 1—x2A(X)Sy(x,y)

X2

Ki(d,0)= [1-S(xy)], (47)  If here S,(x,0) is replaced by its valué for small x and
x2S4(x,y) is replaced by its valug for smallx andy, then

this becomes

X2_y2

with the functionS;(x,y) defined by

4 y?  3+2A(x)
Si(x.y) = 3ix{2jo(2y) ~j2(2y) IXhiY(2%) ~ya(2y) 2 3-AX (58)
x[2h§P(2x)—h5P(2x)]}. (48 which is equivalent to the Lorentz-Lorenz formy®8). One
_ _ _ . may obtain corrections to the Lorentz-Lorenz formula by
Moreover, we define the dimensionless functidfx) by solving Eq.(57) by iteration. The iteration converges rapidly,
in contrast to Eq(50), which is numerically unstable under
a(w) iteration. Therefore, we regard E¢r7) as the proper nonlo-

A(X)=4mn

(49

g1(w)’ cal generalization of the Lorentz-Lorenz formula.
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V. ANALYSIS OF THE GENERALIZED LORENTZ- 3 T T T T E—

LORENZ FORMULA d
25 4
In this section we analyze the generalized Lorentz-Lorenz yd
formula (57) in more detail. It is useful to regard the square Re.) 2} .
of the refractive indexN?(w)=y?/x? corresponding to the !
appropriate solutiogy(x) of Eq.(57) as a function of dimen-
sionless polarizabilith and size parametar Since we want
to consider large polarizability it is convenient to use the 1
variable

Im (o(x) || |

05 | 4

[=——. (59) 0

05 1 I I I I

Thus we consider the functioN?(Z,x) for complex{ and
positive x. From Eq.(58) we see that the usual Lorentz- x

Lorenz formula corresponds to FIG. 1. Plot of the real and imaginary parts of the center of

singularities{y(x), defined by Eq( 67), as a function of size pa-

N2(§,O)= 1— 1 o (60) rameterx (solid curve and dashed curve, respectiyely
+ p— oo
g N2 (£ X)=1+ > Gi(x) (64)
ga - j=0 §j+l 3

with a simple pole at'=— 3. For size parametex>0 the
i o2
analytic structure of the functiolN(Z,x) becomes more by an algorithm due to Stieltjg®7]. The latter expansion is

complicated. in effect an ex . o
; ) . . pansion in powers of the polarizability. The
It is of_mterest to consider the Drude-Lorentz model with coefficientsc; can be determined from E¢50), cast in the
polarizability form i
C 3 5 1
a(w)=e;———a’, (61) NZ(£,x)=1—=S(x,y). (65)
wo—w g

whereC is the coupling constant and, the resonance fre- From Eq.(51) we find
guency. Moreover, we consider constant for example,
g,=1 for vacuum. From Eq49) we see that for this model
the variable{ takes real values for real frequencies, with
{=0 at the resonance frequenay. The pole at/=— 3 in
Eq. (60) corresponds to the Lorentz-shifted resondr& at

The higher-order coefficients can be found by expansion of
Si(x,y) abouty=x in powers of the difference/—x. In
particular we findb,=c,=— {o(x) with

4
_ 2 3
=1/ w5— —=na’C. 62 1 -
e @™ 73 62 Lo(X)=——=[ (i +4x—4ix?— 4x3)e**— i — 4ix?+ 4x3

16x3
One would expect that for size parameter0 the pole gets +16ix4]. (67)
shifted to a position in the lower half of the compléyplane,
corresponding to a shifted and broadened Lorentzian lingzq, largeZ we find from Eq.(63)
However, the analytic behavior turns out to be more compli-
cated and a branch cut singularity in the upper half of the
complex{ plane develops. N2(Z,x)~1— )

To analyzeN?(¢,x) as a function of the complex variable {=£o(x)

¢ for fixed x we cast it in the form of the continued fraction . . . -
Hence {y(x) is the weighted center of singularities. For

small x

(68)

1
N2(¢,x)=1— 3 (63 - 6
1 1 1
bﬁﬁm L()=—3+ EXZ+ gix3+0(x4). (69)
2

In Fig. 1 we plot the real and imaginary partsB¢ex) and
with coefficientsa; ,b; that depend orx. These can be de- Im{y(X) as functions ok. The positivity of Imfo(x) implies
termined from the coefficients in the series expansion in inthat the preponderant weight of the singularities resides in
verse powers of, the upper half of the complekplane. Numerically we find a
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24 L ' ' L where ¢=(4m/3)na® is the volume fraction. The back-
ground propertiez, and u, are taken to be real constants.
B 7 The Lorentz-Lorenz formula in the forit58) becomes
ImN? 22| -
3
NZ(w)=1+ 2—?, (73)
21 1 X§—X2—ixXgo—p

2r ] showing a Lorentzian resonance at

19 - -

X, = Xo— P (74)
18 N
of half-width go. The differencexy—x, is the well-known

17 T R . . P Lorentz shift. The parameter
-0.33 -0.328 -0.326 -0.324 -0.322 -0.32 -0.318 -0.316 -0.314 -0.312 -0.31

¢ a
Xo= VE1M1 @0 (75)

FIG. 2. Plot of IMN2(¢,x) for x=0.1 as a function of for
[=£¢+0.06.

measures the importance of retardation.

In comparing different systems it is natural to keep the
ratiogo/Xo= vo/ wq fixed. We shall analyze the square of the
refractive indexN?(w) as a function of dimensionless fre-
quencyx for various values ofx, and p, keepinggy/Xg

fixed. In the limit of zero frequency the refractive index is
VI. DRUDE-LORENTZ MODEL given by Eq.(58), so that

branch cut nea¢=—3 for small x. In Fig. 2 we plot the
imaginary part InlN?(¢,x) for x=0.1 as a function o for
{=§&+0.04.

The fact that the singularity centég(x) lies in the upper 3+2A(0)
half of the complex{ plane implies that the generalized 2(0)= ——~,
Lorentz-Lorenz formuld57) does not provide a satisfactory 3—-A(0)
approximation for the refractive inded?(w) as a function )
of frequency. For the Drude-Lorentz model without damp-corresponding to the Lorentz-Lorenz formu8), taken at
ing, defined by Eq(61), the exact refractive indeX?(w) zero frequency. From Ed71) we find for the present case
should obey the Kramers-Kronig relations, but the general-
ized Lorentz-Lorenz formula predicts a violation of causality ’ x3+2p
for this model. This shows that correlation corrections cannot N*(0)= 2—p (77)
be neglected. Proper account of these corrections should re- o= P

store causality for a disordered system of undamped Drude|=hiS clearly depends on the resonance frequengy We

Lorentz oscillators. hall vary the parametqy in proportion toxg, so that both

To get an impression of the nature of the generalizecﬁl2 0 d th tiox. / in fixed s A
Lorentz-Lorenz formula we consider the Drude-Lorentz (0) an € raliax, /X remain fixed ao varies. As a

model with damping, as given by the polarizability,

(76)

16 T T T T T

C 14 [ ; §
a(w)=g;——————a’, (70)
wy— W —lwyy 12 - i .
Im N? i
where vy, is the damping constant. Expressiti0) is used |
for atomic spectral lineg23], as well as for the description of i
polaritons in solid suspensiof28]. The damping constant
vo Will be chosen sufficiently large that causality is not vio- 1
lated by the generalized Lorentz-Lorenz formula. Upon sub-
stitution of Eq.(70) into Eq. (49) we find for the function |
A(X) i
AX)=—5——— ip — (72) "
with FIG. 3. Plot of ImMN2(¢£,x) as a function ofx/x, for x,=0.1
(dashed curveand x,=0.2 (dotted curvg for the Drude-Lorentz
a2 a model with damping coefficierd,=0.1x, and coupling parameter
p=¢e1u1—C, Go= Je1ps — Yo, (72)  p=0.25¢. We compare with the Lorentzian I/ (), as given
c c by Eq.( 73) (solid curve.
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F'G- 4. Same as in Fi9-23 for damping coefficigt=0.2x, and FIG. 5. Same as in Fig. 3 for damping coefficiggt=0.3x, and
coupling parametep= 0.5¢. coupling parametep=0.7x3.

. refractive index as a function of the complex single-particle
consequence, the Lorentz-Lorenz functisf(w) given by polarizability has surprising features with a singularity struc-
Eq. (73) takes the same form for different valuesxgfwhen  tre in the physical part of the complex plane that causes
plotted as a function ok/x,. violation of causality if the damping of the single-particle
In Fig. 3 we plot IN?(w) as a function of dimensionless polarizability is too weak. This implies that the generalized
frequencyx/xo= w/wg for two valuesx,=0.1 andx,=0.2  Lorentz-Lorenz formula must be used with caution. For
with damping coefficiengy,=0.1xq and coupling parameter weak damping it is essential to include correlation correc-
p=0.25¢, so thatN?(0)=2. We compare with the Lorent- tions in the calculation of the effective dielectric tensor in
zian ImMN?(w), which follows from Eq.(73). As the retarda- Order to restore causality. Calculations in electrostatics of the

tion parametex, increases the absorption line shifts to the i"homogeneous line broadening corresponding to correlation

right, becomes narrower, and takes a non-Lorentzian fom,ﬁorrection_s show that this proviqles sufficiently large effec-
In Fig. 4 we present similar plots for the values=0.1 and tive damping[29]. These calculations should be extended to

: : - - include retardation.
Xo=0.2 with damping coefficiengy=0.2¢xg and coupling inc : . . .
parametep=0.5¢, corresponding tN?(0)=4. In Fig. 5 We have considered a simple model of spherical particles

- - . ) with a polarizable point dipole at the center. In previous
we present plots fory=0.1 andx,=0.2 with damping co- \york [25] we have derived a mathematical identity that al-

efficientgo= 0.3, and coupling parametqr=0.7x3, CoIre-  |ows one to study more general models. In particular, the
sponding toN?(0)=8. In all cases we have chosen the case of uniform dielectric spheres can be investigated. Due to
damping coefficient sufficiently large that the generalizedthe occurrence of higher-order multipole polarizabilities the
Lorentz-Lorenz formula does not violate causality. calculation becomes rather more involf&@)]. It is desirable
to have a better understanding of correlation corrections for
the point dipole model before embarking on elaborate calcu-
VII. DISCUSSION lations for more complicated systems.

We have studied the nonlocal generalization of the
Lorentz-Lorenz formula for the refractive index that follows
from a selection of terms in the cluster expansion for the This work was supported by the Project SILASI, TMR
effective dielectric tensor. In turns out that the correspondindNetwork Contract, No. ERB FMRX-CT96-0043.
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